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A B S T R A C T   

In an earlier publication, we proposed a new explicit time integration scheme, the β1/β2-Bathe method, which is 
simple in its formulation and showed remarkable accuracy in the solution of problems [1]. A particular strength 
of the method is that it can directly be used as a first-order or second-order scheme by a change of the values of β1 
and β2. While good results are obtained with reasonable values of β1 and β2, for excellent accuracy better values 
of the parameters need to be chosen. We propose in this paper values of β1 and β2 for the first-order scheme, best 
used in wave propagation analyses, and separate values for the second-order scheme, best used in analyses of 
structural vibrations. In each case, one set of values of (β1, β2) is given and to possibly improve the results only 
one of the parameters needs to be changed, that is, β1 for wave propagations and β2 for structural vibrations, 
making the scheme a one-parameter method. Another strength of the procedure is that physical damping can 
directly be included in the solution, the effect of which on the stability and accuracy of the solutions we analyze 
in the paper. The use of the solution scheme in nonlinear analysis is, as we show in the paper, a simple extension 
from linear analysis. Finally, we give various solutions using the explicit β1/β2-Bathe method in linear and 
nonlinear analyses to illustrate the performance of the method with the given recommendations for its use.   

1. Introduction 

When addressing the solution of dynamic problems in practical ap
plications, numerical methods play an essential role in solving the 
governing equations. Among the available numerical methods, direct 
time integration methods are widely used, and indeed play a pivotal role 
in solving time-dependent finite element equations. They can be cate
gorized into two main groups: implicit and explicit methods. Implicit 
methods can be conditionally or unconditionally stable, whereas explicit 
schemes are inherently conditionally stable [2]. Extensive research ef
forts have been dedicated to increasing the effectiveness of direct time 
integration methods because even seemingly small increases in effec
tiveness can be very important in engineering practice and computa
tional science. These efforts have led to the proposal of various explicit 
and implicit methods, see for example [1–29]. 

When employing diagonal mass and damping matrices, explicit 
methods typically require less computational effort within each time 
step than implicit schemes. On the other hand, using an unconditionally 

stable implicit method frequently allows the use of much larger time 
steps which can result in a lower total analysis cost. The choice of which 
method then to use for the most effective solution can be difficult. 
However, there are instances when an explicit method should be more 
efficient, notably when the applied loads or the calculation of the 
response necessitate the utilization of a small time step. In addition, an 
explicit scheme may also be more effective in the solution of a nonlinear 
problem [2–4]. 

It is well-known that the presence of numerical damping in a direct 
time integration solution scheme can be important. In order to attain 
good accuracy in a response prediction, it is imperative for direct time 
integration methods to impose, automatically, some numerical damping 
in the solution. The numerical damping through the solution scheme 
should prevent spurious response due to high non-physical frequencies 
in the mesh. The difficulty, however, is that the numerical damping 
should be just enough to rapidly damp out the spurious frequencies with 
the largest time step possible, while giving good accuracy in the 
response prediction [2,7,10,12,13,14]. 
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Recently, we introduced the explicit β1/β2-Bathe method [1] which 
uses two sub-steps, like employed in all Bathe direct time integration 
schemes. An important quality is that the scheme uses the equilibrium 
equations at the end of each sub-step to advance the solution to that 
time. In the computations we use, for each sub-step, first a Taylor series 
to predict the velocities and displacements in order to solve for the 
unknown accelerations. Subsequently, we update these predictions by 
adding correction terms involving the just calculated accelerations. The 
correction term for the velocities uses the parameter β1 and the 
correction term for the displacements uses β2. 

In this paper, we further study the explicit β1/β2-Bathe method to 
identify optimal values of the parameters β1 and β2 to use in solutions. 
These values are more effective to use than those given in Ref. [1]. We 

give the spectral radii, amplitude decays and period elongations when 
the recommended values of β1 and β2 are used and also identify the 
critical time step when physical damping is included in the solution. In 
addition, we give the equations to use for nonlinear analysis and present 
some illustrative solutions of linear and nonlinear problems. 

2. The fundamental equations 

In this section, we present the fundamental equations of the explicit 
β1/β2-Bathe time integration method for linear and nonlinear dynamics. 

2.1. Linear dynamics 

In the explicit β1/β2-Bathe method, like in all Bathe family time 
integration methods, we use two sub-steps of size γΔt and (1 − γ)Δt. In 
linear dynamics, for the first sub-step, we use the following equations, 

M t+γΔtÜ = t+γΔtR − C
[

tU̇ + (γΔt) tÜ
]
− K

[
tU + (γΔt) tU̇

+ (0.5)(γΔt)2 tÜ
]

(1)  

t+γΔtU̇ = tU̇+(γΔt) tÜ+β1(γΔt)
(

t+γΔtÜ − tÜ
)

(2)  

t+γΔtU = tU+(γΔt) tU̇+(0.5)(γΔt)2 tÜ+ β2(γΔt)2
(

t+γΔtÜ − tÜ
)

(3) 

We employ Eq. (1) to obtain the acceleration response at t + γΔt, and 
then use Eqs. (2) and (3), respectively, to obtain the vectors of velocity 
and displacement at t + γΔt. In these equations and below, we use our 
usual notation for the mass, damping, and stiffness matrices, the 

Fig. 1. Spectral radius of the explicit β1/β2-Bathe method for β1 = 0.5 (second- 
order accuracy). 

Fig. 2. Stable region of the explicit β1/β2-Bathe method for β1 = 0.5 (second- 
order accuracy). 

Fig. 3. Amplitude decay of the explicit β1/β2-Bathe method for β1 = 0.5 (sec
ond-order accuracy). 
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acceleration, velocity, and displacement vectors, and for all variables in 
the time stepping and stability and accuracy analyses [1,2]. 

For the second sub-step, we use the following equations, 

M t+ΔtÜ=t+ΔtR − C
[

t+γΔtU̇ + (1 − γ)(Δt) t+γΔtÜ
]

− K
[

t+γΔtU + (1 − γ)(Δt) t+γΔtU̇ + (0.5)(1 − γ)2
(Δt)2 t+γΔtÜ

] (4)  

t+ΔtU̇ = t+γΔtU̇+(1 − γ)(Δt) t+γΔtÜ+ β1(1 − γ)(Δt)
(

t+ΔtÜ − t+γΔtÜ
)

(5)  

t+ΔtU = t+γΔtU + (1 − γ)(Δt) t+γΔtU̇ + (0.5)(1 − γ)2
(Δt)2 t+γΔtÜ

+β2(1 − γ)2
(Δt)2

(
t+ΔtÜ − t+γΔtÜ

) (6) 

Now we use Eq. (4) to obtain the acceleration response at t + Δt, and 
then use Eqs. (5) and (6), respectively, to obtain the velocity and 
displacement vectors at t+Δt . 

2.2. Nonlinear dynamics 

In nonlinear dynamics, Eq. (1) to obtain the nodal accelerations at 
t+γΔt is changed to 

M t+γΔtÜ = t+γΔtR − t+γΔtF̃ − C
[

tU̇ + (γΔt) tÜ
]

(7)  

where t+γΔt F̃ are the nodal forces corresponding to the element stresses 
at the displacements t+γΔtU with 

t+γΔtU = tU+(γΔt) tU̇+(0.5)(γΔt)2 tÜ (8) 

Then we proceed as in linear dynamics, that is, Eqs. (2) and (3) give 

the velocity and displacement vectors at t + γΔt. 
For the second sub-step, Eq. (4) is modified to 

M t+ΔtÜ=t+ΔtR − t+ΔtF̃ − C
[

t+γΔtU̇ + (1 − γ)(Δt) t+γΔtÜ
]

(9)  

where t+ΔtF̃ are the nodal forces at time t+Δt corresponding to 

t+ΔtU = t+γΔtU+(1 − γ)(Δt) t+γΔtU̇+(0.5)(1 − γ)2
(Δt)2 t+γΔtÜ (10) 

Next we use Eqs. (5) and (6), to obtain the velocity and displacement 
vectors at t + Δt. 

Fig. 4. Period elongation of the explicit β1/β2-Bathe method for β1 = 0.5 
(second-order accuracy). 

Fig. 5. Spectral radius of the explicit β1/β2-Bathe method for β2 = 0 (first- 
order accuracy). 

Fig. 6. Stable region of the explicit β1/β2-Bathe method for β2 = 0 (first- 
order accuracy). 
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3. To determine the control parameters (γ, β1 and β2) 

In Ref. [1], we introduced how the β1/β2-Bathe method can be used 
as a first-order or second-order solution procedure. We used γ = 0.5 and 
reasonable values of β1 and β2. Good solution results were obtained. 
However, we did not deeply pursue to find the optimal values for these 
two parameters β1 and β2 to reach the best solution accuracy. 

When trying to establish the optimal values of β1, β2 and γ, we found 
that using γ = 0.5 is appropriate. However, the values of the parameters 
β1 and β2 should be different from those used earlier [1] in order to reach 
even better accuracy in some problem solutions. 

If we consider the characteristic polynomial of the integration 
approximation (or amplification) matrix A for a direct time integration 
method, we obtain from det(A − λI) = 0 

λ3 − A1λ2 +A2λ − A3 = 0 (11) 

The stability criteria of Routh-Hurwitz are defined as 

a0 = (1 + A1 + A2 + A3)⩾0
a1 = (3 + A1 − A2 − 3A3)⩾0
a2 = (3 − A1 − A2 + 3A3)⩾0
a3 = (1 − A1 + A2 − A3)⩾0

(a1a2 − a3a0)⩾0

(12)  

where λ is an eigenvalue of the amplification matrix, and A1 = trace(A), 

A2 = 0.5
[
(trace(A))

2
− trace(A2)

]
and A3 = det(A) are the invariants of 

the matrix. 
In (12), the first four conditions are the necessary conditions and the 

last condition is a sufficient condition for stability. The inequalities (12) 
can be used to establish the stability region of a solution scheme. 

In the following, we use these criteria to study the second-order and 
first-order schemes. The amplification matrix of the explicit β1/β2-Bathe 
method is given in Ref. [1]. We first assume that physical damping is not 
included and thereafter (in Section 4) consider the effect of physical 
damping. 

3.1. Recommendations for the second-order accurate scheme 

As we discussed in Ref. [1], in the explicit β1/β2-Bathe method we 
must use β1 = 0.5 to achieve second-order accuracy. Regarding the 
stability when using β1 = 0.5 and ξ = 0 the following expressions are 
obtained from (12) 

a0 = (
β2

2

4
+

1
16
)(ωΔt)4

− (ωΔt)2
+ 4⩾0

a1 = (−
β2

2

4
+

β2

4
+

1
16

)(ωΔt)4
− (ωΔt)2

+ 4⩾0

a2 = (−
1

16
)(ωΔt)4

+ (ωΔt)2⩾0

a3 = (−
β2

2

4
−

1
16

)(ωΔt)4
+ (ωΔt)2⩾0

(a1a2 − a3a0) =
1
32

(
β2
(
2β2

2 + β2
) )

(ωΔt)8
− (

β2
2

2
)(ωΔt)6

+ β2(ωΔt)4⩾0

(13)  

where the frequency ω, the time step Δt and control parameter β2 are all 
positive. 

Considering the above inequalities leads to the following 

Fig. 7. Amplitude decay of the explicit β1/β2-Bathe method for β2 = 0 (first- 
order accuracy). 

Fig. 8. Period elongation of the explicit β1/β2-Bathe method for β2 = 0 (first- 
order accuracy). 
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observations. 
The expression a0⩾0 is satisfied for β2⩾0 for every (ωΔt)⩾0. The 

condition a1⩾0 is satisfied for β2⩾0 when 0⩽(ωΔt)⩽
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

8
1+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4β2

2 − 4β2

√
√

. The 

condition a2⩾0 is satisfied for β2⩾0 when 0⩽(ωΔt)⩽4. The condition a3⩾ 
0 is satisfied for β2⩾0 when 0⩽(ωΔt)⩽ 4̅̅̅̅̅̅̅̅̅̅

4β2+1
√ . The condition 

(a1a2 − a3a0)⩾0 is satisfied if β2⩾0 for every (ωΔt)⩾0. The five criteria in 
the conditions (13) are simultaneously satisfied for 
β2⩾0 with 0⩽(ωΔt)⩽ 4̅̅̅̅̅̅̅̅̅̅

4β2+1
√ . 

In summary, the Routh-Hurwitz criteria show that the explicit 
β1/β2-Bathe method for β1 = 0.5 is conditionally stable provided 

Fig. 9. Spectral radius of the explicit β1/β2-Bathe method in the presence of 
physical damping 0⩽ξ < 1 for β1 = 0.5 and β2 = 0. 

Fig. 10. Stable region of the explicit β1/β2-Bathe method in the presence of 
physical damping 0⩽ξ < 1 for β1 = 0.5 and β2 = 0. 

Fig. 11. Spectral radius of the CDM in the presence of physical damp
ing 0⩽ξ < 1. 

Fig. 12. Stable region of the CDM in the presence of physical damping 0⩽ξ < 1 
The spectral radius is smaller at darker color. 

Table 1a 
Values of parameters β1 and β2 generally giving reasonably accurate results.   

For wave propagations For structural dynamics  

β1 = 0.54, β2 = 0 β1 = 0.5, β2 = 0.04  

Table 1b 
Ranges of values of parameters β1 and β2 to choose for very good results.   

For wave propagations For structural dynamics  

0.5 < β1⩽0.9, β2 = 0 β1 = 0.5, 0⩽β2⩽0.2  

M.M. Malakiyeh et al.                                                                                                                                                                                                                         
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β2⩾0 , 0⩽(ωΔt)⩽
4

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4β2 + 1

√ (14) 

Hence in this case the critical time step Δtcr for second-order accu
racy is 

Δtcr =

(
1

ωh

)
4

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4β2 + 1

√ (15)  

where ωh is the highest frequency and Ts =
2π
ωh 

is the smallest period of 
the finite-element mesh. 

Based on the above results and the results shown in Figs. 1–4, we 
recommend to use 

Fig. 13. A clamped–free bar subjected to a step end load [17].  

Fig. 14. Predicted velocity at the mid-point of the bar,CFL = 1.925  
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β1 = 0.5 , 0⩽β2⩽0.2 (16) 

The spectral radius, amplitude decay and period elongation are 
shown in Figs. 1–4. As we see in Fig. 1, the spectral radius indicates that 
by choosing a larger β2, numerical damping is already applied for a 
smaller time step, but Figs. 1 and 2 show that with an increasing value of 
β2, the stability region decreases. Fig. 3 gives the amplitude decay which 
is zero when β2 = 0 and is maximum when β2 = 0.2, and Fig. 4 shows 

the period elongation which for β2 = 0 is negative and for β2 = 0.2 
positive. 

3.2. Recommendations for the first-order accurate scheme 

We concluded in Ref. [1] that for the solution of wave propagation 
problems, in addition to using the first-order accurate scheme of the 
method, we need that the spectral radius decreases (from the value of 1) 

Fig. 15. Predicted velocity and relative L2 error at the mid-point of the bar,CFL = 1.998  
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Fig. 15. (continued). 

Fig. 16. The square membrane with wave velocity c = 10 m/s[1].  
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already at a small time step but then continues to decrease with a very 
small slope. If the decrease of the spectral radius is small even at rela
tively large time steps, it allows to use large time steps for an accurate 
solution. Of course, the period elongation error should also be reason
ably small. 

In the explicit β1/β2-Bathe method we need to use β1 ∕= 0.5 to ach
ieve first-order accuracy, and we select β2 = 0 to have the spectral radius 
decrease as explained above. 

Considering the stability when β2 = 0 and ξ = 0, we obtain the 
conditions 

a0 = (
β2

1

8
+

1
32
)(ωΔt)4

− (β1 +
1
2
)(ωΔt)2

+ 4⩾0

a1 = (
β1

8
)(ωΔt)4

− (ωΔt)2
+ 4⩾0

a2 = (−
β2

1

8
−

1
32

)(ωΔt)4
+ (β1 +

1
2
)(ωΔt)2⩾0

a3 = (−
β1

8
)(ωΔt)4

+ (ωΔt)2⩾0

(a1a2 − a3a0) = −
1
8
(2β1 − 1)2

(ωΔt)4
+ (4β1 − 2)(ωΔt)2⩾0

(17) 

Fig. 17. Predicted velocity at center point,CFL = 1.925  
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Considering the above inequalities leads to the following observations. 
The expression a0⩾0 is satisfied when β1⩾0 for every (ωΔt)⩾0. The 

condition a1⩾0 is satisfied when β1⩾1
2 for every (ωΔt)⩾0, and also for 

β1 < 1
2 provided 0⩽(ωΔt)⩽2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1−

̅̅̅̅̅̅̅̅̅̅
1− 2β1

√

β1

√

and (ωΔt)⩾2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1+

̅̅̅̅̅̅̅̅̅̅
1− 2β1

√

β1

√

. The 

condition a2⩾0 is satisfied when β1⩾0 for 0⩽(ωΔt)⩽4
̅̅̅̅̅̅̅̅̅̅
2β1+1
4β2

1+1

√
. The con

dition a3⩾0 is satisfied when β1⩾0 for 0⩽(ωΔt)⩽
̅̅̅̅
8
β1

√
. The condition 

(a1a2 − a3a0)⩾0 is satisfied when β1⩾1
2 for 0⩽(ωΔt)⩽4

̅̅̅̅̅̅̅̅̅̅̅̅̅
1

(2β1 − 1)

√
. The five 

criteria in equation (17) are simultaneously satisfied when 
β2⩾0 for 0⩽(ωΔt)⩽ 4̅̅̅̅̅̅̅̅̅̅

4β2+1
√ . 

In summary, the Routh- Hurwitz criteria show that the explicit 
β1/β2-Bathe method for β2 = 0 and β1 ∕= 0.5 is conditionally stable 
provided 

Fig. 18. Predicted velocity at center point,CFL = 1.998  

Fig. 19. A bi-material rod subjected to a step traction at its right edge [1].  
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β1 >
1
2

and 0⩽(ωΔt)⩽

̅̅̅̅̅
8
β1

√

(18) 

The critical time step Δtcr of the explicit β1/β2-Bathe method when 
used with first-order accuracy is 

Δtcr =

(
1

ωh

) ̅̅̅̅̅
8
β1

√

(19) 

Based on the above results and the results shown in Figs. 5–8, we 
recommend to use 

β2 = 0 , 0.5 < β1⩽0.9 (20) 

Figs. 5–8 show the spectral radius, stability region, amplitude decay 
and period elongation of the scheme. Fig. 5 of the spectral radius shows 
that by choosing a larger β1, numerical damping can be applied earlier. 
Fig. 6 displays that the stable region diminishes as the value of β1 in
creases. As seen in Figs. 7 and 8, as we increase the value of β1, both, the 
amplitude decay error and the period elongation error increase. 

4. Stability of the explicit β1/β2-Bathe method in the presence of 
physical damping, with 0⩽ξ < 1 

Having identified values to use for the two parameters β1 and β2, we 
next investigate the stability of the explicit β1/β2-Bathe method for these 

values in the presence of physical damping. Using the conditions in (12) 
and the results of Section 3, we find that the method is stable for ξ ∕= 0 in 
the two introduced regions for Δt⩽Δtcr with 

Δtcr =

(
1

ωh

)

(

− 0.5ξ − ξβ1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
0.5β1 + β2 + (0.5ξ + ξβ1)

2 )
√ )

(0.25β1 + 0.5β2)
(21) 

Hence the critical time step to use depends on the value of ξ. 
It is of value to compare this result with the result for the central 

difference method (CDM) when physical damping is included, for 0⩽ξ <

1 . 
For this comparison, we consider the case β1 = 0.5 and β2 = 0 in the 

explicit β1/β2-Bathe method. We select these parameters to have no 
numerical damping, like when using the CDM. 

Figs. 9 and 10 show that for the explicit β1/β2-Bathe method, the 
stability range of the method decreases as the physical damping in
creases, whereas for the CDM, Figs. 11 and 12 show that the spectral 
radius decreases at small time step with increasing physical damping, 
but the stability range of the method remains the same. The inherent 
reason is that the β1/β2-Bathe method is fully explicit because the 
physical damping is represented on the right-hand side of the governing 
equations, Eqs. (1) and (4). On the other hand, in the CDM, the physical 
damping effect, the damping matrix C, appears on the left-hand side of 
the governing equation [2]. This is like in an implicit time integration 
scheme and renders the stability region of the CDM independent of ξ 

Fig. 20. (a) Predicted stress at point A, CFL = 1. 925. (b) Predicted velocity at point A, CFL = 1.925.  
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(although implicit schemes can also be unstable for certain values of 
their parameters [2]). But of course, as ξ increases, using a fixed time 
step satisfying stability, the accuracy of solution decreases in both so
lution schemes. 

5. Illustrative example solutions 

We first reconsider in Section 5.1 the solutions of three linear 
example problems, solved earlier with the explicit β1/β2-Bathe method 
[1]. The results, when compared with those given in ref. [1], show the 
improvements in solutions reached using the parameter values recom
mended above. 

Then we illustrate in Section 5.2 the use of the explicit β1/β2-Bathe 
method in solving some nonlinear problems that have also been 
considered before [30–33]. 

For the solutions using the explicit β1/β2-Bathe method, we recom
mend to use the values given in Table 1a. However, to obtain an optimal 
solution, the user should choose values from the ranges given in 
Table 1b. With values within these regions, very good response pre
dictions may be obtained (even for a response of long time). 

5.1. Linear systems 

The linear solutions given below illustrate the remarkable accuracy 
that can be obtained. 

5.1.1. A clamped bar subjected to a step-end load 
We consider the clamped bar shown in Fig. 13 with the material and 

geometric properties E = 30× 106 psi, ρ = 0.00073 lb/in3,A = 1 in2, 
and L = 200 in. The applied step end load is F(t) = 10,000 lb. We use 
1000 equal 2-node elements and the lumped mass matrix to model the 

Fig. 21. (a) Predicted stress at point A, CFL = 1.8. (b) Predicted velocity at point A, CFL = 1.8.  

Fig. 22. Configuration of oscillating simple pendulum [30].  
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bar and have Ts = 3.099422668× 10− 6. 

Using β1 = 0.54 and β2 = 0 from Table 1a, and c =
̅̅
E
ρ

√
, the CFL 

number and time step are given by 

CFL = (
c

Δx
)(

Ts

2π)
̅̅̅
8

√

̅̅̅̅̅
β1

√ = 1.925  

Δt = CFL(
Δx
c
) = 1.925 × (

200
1000̅̅̅̅̅̅̅̅̅̅̅
30×106

0.00073

√ )

To improve the solution results we choose the values of parameters 
from Table 1b and select β1 = 0.501. Thus we have 

CFL = (
c

Δx
)(

Ts

2π)
̅̅̅
8

√

̅̅̅̅̅
β1

√ = 1.998 

Fig. 23. Predicted angular displacement Δt = 0.001.  

Fig. 24. Predicted angular displacement Δt = 0.003.  

Fig. 25. Predicted angular displacement Δt = 0.0042.  
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Δt = CFL(
Δx
c
) = 1.998 × (

200
1000̅̅̅̅̅̅̅̅̅̅̅
30×106

0.00073

√ )

Figs. 14 and 15 give the predicted velocity responses at the mid-point 
of the bar (node 500) using the explicitβ1/β2-Bathe method. In these 
figures, we depict the response in the time intervals [0, 0.015], [0.2918, 
0.307] and [0.6116, 0.6266] giving the calculated velocity in compar
ison to the analytical solution. Using β1 = 0.54,β2 = 0 the accuracy of 
the solution is excellent in the short time response but then deteriorates. 
Then using β1 = 0.501,β2 = 0 the solution is remarkably accurate over 
the complete time interval although the time step used is even slightly 
larger. These curves show the remarkable accuracy reached. However, 
since the analytical solution for certain time ranges is zero, the relative 
actual error measured on the analytical solution is mathematically 
difficult to express. Nevertheless, in Fig. 15 we show the relative L2 error 
assuming that it is zero when the analytical solution is zero. We see that 
there are only small peaks in the error at the sudden changes in velocity. 

5.1.2. Prestressed square membrane 
We consider the prestressed square membrane with L = 10 m shown 

in Fig. 16 subjected to a constant initial velocity prescribed over its 

Fig. 26. The double pendulum, m1 = m2 = 2 kg, l1 = l2 = 2 m and g = 9.81 
m/s2. 

Fig. 27. Predicted angular displacements using standard Bathe method with Δt = 0.1.  
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central domain of l× l, l = 7 m [1]. Due to symmetry, we only discretize 
a quarter of the membrane using 150 × 150 4-node elements and have 
Ts = 0.010472167. 

Using first β1 = 0.54 and β2 = 0 we have 

CFL = (
c

Δx
)(

Ts

π )

̅̅̅
8

√

̅̅̅̅̅
β1

√ = 1.925  

Δt = CFL(
Δx
c
) = 1.925 ×

1
300 

Then to improve the results using β1 = 0.501 and β2 = 0 we have 

CFL = (
c

Δx
)(

Ts

π )

̅̅̅
8

√

̅̅̅̅̅
β1

√ = 1.998  

Δt = CFL(
Δx
c
) = 1.998 ×

1
300 

Figs. 17 and 18 show the prediction of the velocity response. Using 
β1 = 0.54, β2 = 0, the solution accuracy is very good initially but with 
β1 = 0.501, β2 = 0 we achieve an excellent response prediction 
throughout the time considered, and (as in Section 5.1.1) with the 
slightly larger time step. 

5.1.3. A bi-material rod subjected to a step end load 
Fig. 19 shows the rod we consider; it consists of two pieces with 

different material properties. The wave velocities of the left and right 
pieces are equal to c1 = 40

̅̅̅
5

√
m/s and c2 = 20

̅̅̅
2

√
m/s, respectively. The 

rod is at rest when suddenly a uniform constant step traction of unit 
magnitude is applied at its right end. 

Fig. 28. Predicted angular displacements using implicit β1/β2-Bathe method with Δt = 0.1.  
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Using a mesh of 1 × 800 equal 4- node two-dimensional elements, 
with 400 elements in each piece of material and a lumped mass matrix 
we have Ts = 5.56580819× 10− 4. 

Using β1 = 0.54 and β2 = 0, we have 

CFL = (
c1

Δx
)(

Ts

2π)
̅̅̅
8

√

̅̅̅̅̅
β1

√ = 1.925  

Δt = CFL(
Δx
c1

) = 1.925 ×
0.005
̅̅̅̅̅̅̅̅
800

√

and selecting β1 = 0.62 and β2 = 0, we obtain 

CFL = (
c1

Δx
)(

Ts

2π)
̅̅̅
8

√

̅̅̅̅̅
β1

√ = 1.8  

Δt = CFL(
Δx
c1

) = 1.8 ×
0.005
̅̅̅̅̅̅̅̅
800

√

The stress and velocity predictions at point A are shown in Figs. 20 
and 21. We see that an accurate response prediction is obtained with a 
slightly better accuracy using β1 = 0.62. 

5.2. Nonlinear systems 

In this section, we consider two nonlinear systems. For solving these 
nonlinear problems, we use the standard Bathe, implicit β1/β2-Bathe 
and the explicit β1/β2-Bathe methods. 

In all problem solutions using the implicit methods, New
ton–Raphson iterations are performed to solve the nonlinear equations 
in each time step, with the iterations performed until 

Fig. 29. Predicted angular displacements using explicit β1/β2-Bathe method with Δt = 0.1.  
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⃦
⃦ΔU(i)⃦⃦ < ε  

where ΔU(i) is the displacement increment reached in iteration (i) and ε 
is the convergence tolerance, ε = 10− 5 

5.2.1. Oscillating simple pendulum 
We consider the “toy problem” of an oscillating simple pendulum. 

The system has been contrived for the initial conditions given and has 
been amply analyzed before [30–32]. 

The pendulum consists of a mass attached to a frictionless hinged 
weightless rod of length L, see Fig. 22. Dimensionless values g = 1 and L 
= 1 are used in the example, and the equation of motion is 

θ̈+(
g
L
)sin(θ) = 0  

where θ(t) is the angle between the rod at time t and a vertical line. The 
initial conditions are θ0 = 0 and θ̇0 = 1.999999238456499. 

To solve this problem we use Δt = 0.001, Δt = 0.003 and Δt =

0.0042. As expected, see Figs. 23–25, good solutions are obtained using 
all methods with a sufficiently small time step. Then as we increase the 
time step size, the standard Bathe method gives an inaccurate solution 
first with too large a time step value, and as the time step further in
creases, a response without the oscillation. The other two methods show, 
for the selected time steps, less error to the analytical solution but a 
significant period elongation. 

5.2.2. A double pendulum 
The frictionless double pendulum we consider consists of two point 

masses m1 and m2, connected by rigid weightless rods of length l1 and l2, 
see Fig. 26. The initial conditions are θ1(0) = 0, θ2(0) = π/2 , θ̇1(0) = 0 

Fig. 30. Predicted angular displacements using standard Bathe method with Δt = 0.01.  
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and θ̇2(0) = 0. We solve this example problem with Δt = 0.1 and Δt =
0.01 . The reference solution has been obtained using the 4th-order 
explicit Runge-Kutta method with Δt = 0.005. As shown in 
Figs. 27–32, when the time step Δt = 0.1 is used, all response pre
dictions are not accurate, but the implicit β1/β2-Bathe scheme gives 
almost a good solution. When the time step Δt = 0.01 is used, the 
response predictions of all three methods are close to the reference so
lution. Hence, as expected, using a sufficiently small time step we obtain 
an accurate solution. 

6. Concluding remarks 

The objective in this paper was to focus on the performance of the 
explicit β1/β2-Bathe method. The method was proposed earlier [1] to be 
used as a first-order or second-order solution scheme. In the present 
paper we strived to establish values of the two parameters β1 and β2 that 
yield optimal accuracy, analyzed the method when physical damping is 
included, and showed the application of the scheme in nonlinear 
analysis. 

To establish a general time integration scheme with parameter 
values with which always optimal solutions are obtained is almost 
impossible. The range of different applications in the solution of struc
tural vibrations and wave propagations is too large for that aim to be 

totally achieved. However, we gave in the paper recommendations for 
values to use, and showed that with these recommendations, used as a 
first-order or second-order scheme, good to remarkably accurate results 
are obtained in the problems solved. In particular, the solutions of long 
time wave propagations considered in the paper were accurately pre
dicted using the first-order scheme. 

While physical damping can directly be included because the 
damping effect is only part of the effective load vector – which is an 
advantage of the scheme – we showed in the paper that the critical time 
step for solutions then decreases. This affects the choice of time step to 
be used in practice when physical damping is present. 

The use of the method in general nonlinear analysis is immediate and 
only affects how the effective load vector needs to be calculated. We give 
the governing equations in the paper and show some applications. 

We can conclude that the explicit β1/β2-Bathe method is a very 
promising general time integration scheme, but further studies of the 
method would be valuable. It might be possible to refine the recom
mendations for use of the method when not considering the scheme for 
all possible analysis problems (as we did in this paper), but only for 
particular applications, like for earthquake analysis of buildings. An 
important field to consider is also the dynamic solution of contact 
problems, leading to impact and wave propagations which might be 
solved quite accurately with the scheme. For these special applications it 

Fig. 31. Predicted angular displacements using implicit β1/β2-Bathe method with Δt = 0.01.  
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would be very valuable to explore the use of machine learning for 
identifying and using the optimal values of parameters within the two 
ranges given [34]. The implicit β1/β2-Bathe method was already used 
with overlapping finite elements and the consistent mass matrix to solve 
wave propagations and performed remarkably well [35]. It would now 
be very valuable to identify the accuracy of the explicit scheme pre
sented here when used with overlapping finite elements and a lumped 
mass matrix. Furthermore, the use of the time integration scheme should 
be explored in the solution of multiphysics problems that increasingly 
will be tackled in the future. 
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